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A new recursion relation of CFP for the system of 
identical bosons 
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+ Department of Physics, Tsinghua University, Beijing, China 
$ Department of Physics, Peking University, Beijing, China 
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Abstract. A new recursion relation of coefficients of fractional parentage ( C F P )  with 
seniority presented here provides an  efficient algorithm for computation. As a result of 
the generalised Wigner-Eckart theorem of semisimple Lie groups,  the CFP are factorised 
into isoscalar factors ( I S F )  of the symmetry group of n bosons.  

The  evaluations are done  in the scheme of second quantisation. An analytic formula 
of the multiplicity of  an  irreducible representation (IR) of O ( 3 )  in a n  I K  of O ( N )  is 
presented in this paper.  A complete label ( including seniority) of the states for the system 
of bosons, each with angular momentum /, is also presented. 

1 .  Introduction 

The main difficulty in constructing the state vector of an  identical particle system 
possessing spherical symmetry is that the state vector possesses well defined permuta- 
tional symmetry and total angular momentum also. It is known that the C F P  method 
[ 11 is very powerful for solving the problem; in particular the state vectors expressed 
in  C F P  make the calculation of matrix elements of a one-body tensor operator and a 
two-body scalar operator simple. So the evaluation of the C F P  is quite important in 
the field of microphysics. 

There are several procedures for the evaluation of CFP [2] in iterative form which 
have recently been improved in numerical computation [3] and in the algorithm for 
carrying out C F P  calculations [4 ,5] .  In  this paper a new recursion relation with well 
defined seniority for the CFP of the system of bosons, each with angular momentum 
I ,  is presented. A kind of generalised irreducible tensor operator of a semisimple Lie 
group is defined here. So, using the generalised Wigner-Eckart theorem, C F P  are 
factorised into a product of I S F  for the special unitary and  orthogonal groups. Then 
the evaluation of the C F P  is reduced to evaluating I S F  for the group chain O ( N ) O  
O( N )  2 O( N )  2 O(3). Thus the computing becomes efficient, especially for relatively 
large number of bosons. This paper also presents methods for analytically computing 
the multiplicity occurring in the reduction of O( N )  to O(3) and  for completely labelling 
the state vectors. 

The generalised definition of CFP in second quantisation is developed in 0 2. The 
relation between CFP and  ISF for the boson system classified according to group chain 
U ( N )  =O(  N )  3 O(3)  is given in 5 3. Section 4 is devoted to the deduction of the 
recursion relation of CFP. 
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2. CFP method 

For a system of n bosons, each with angular momentum I ,  the symmetrised state vector 
with total angular momentum L is 

I r a  L M ) = l n  a L M )  

where a symbolises additional quantum numbers required to completely label the 
state. Using coupling of angular momenta, we have 

In-1 a’ L’ I L M ) = { l n - l  a’ L’)II)}L, 

= C ( L ‘  M‘  I mlL ~ ) l n - l  a’ L’ M ’ ) ~ I  m) 
m 

where (L’ M‘ I mlL M )  are the CG coefficients. In this form the state 
In - 1 a’ L’ I L M )  has not been symmetrised between nth particle and the first n - 1 
particles. The symmetrised state InaLM) is connected with the unsymmetrised one 
In - 1 a’ L’ I L M )  by a linear transformation, i.e. 

In a L M ) =  ( n - 1  a’ L’ 1 Li}n a L ) l n - l  a’ L’ I L M ) .  
“ L ’  

The elements of the transformation ( n  - 1 a’ L’ Il}n a L )  are called single-particle 
C F P  and  the states In-1 a’ L’ I L M )  are called parentage states. A reasonable 
choice of phase makes the C F P  real. Notice that this transformation is not unitary. So 
in the notation of CFP, the symbol I }  is used instead of 1, indicating the absence of an  
inverse transformation because all but symmetric representations are suppressed in 
the coupling of a particle to a symmetric ( n  - 1)-particle state. 

The reduced matrix elements of a one-body tensor operator, T: = Z, r : (  i), may also 
with advantage be expressed as 

( n  ar‘ L/IT“In a L )  

= n ( l l l t k l l I )  c ( n - 1  a’ L’ I Ll}n a L ) ( n - l  a’ L‘ I Ll}n ar’ 2) 
a L  

x ( ( k I )  I L‘ i l k  ( I L ’ )  L L)  ( 2 . 1 )  

where ( ( k I ) l  L’ z l k  ( I  L ’ )  L z) are the normalised Racah coefficients. In second 
quantisation the creation operator b;, and annihilation operator b,, of a boson with 
angular momentum I and its z component 1: = m satisfy the following commutation 
relations: 

[ b / m ,  b / m  I = [ b / m ,  b ; m  I = 0 

[ b / m ,  b :m I = 6 m m  . 
Since all the states l~;, , , ,b;~?. . . IO) are symmetrised, there is no parantage state in the 
second quantisation scheme. But the reduced matrix elements can be expressed in 
terms of b;,,,, namely 

( n a ’ L / T k / n  a L )  
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Comparing (2.2) with (2.1), one gets a formal definition of CFP in second quantisation 

(2.3) ( n - 1  CY' L' I Ll}n CY L ) =  -(n CY LIIbllIn-1 CY'  L'). It 
The two-body scalar operator V = $E,, U,, can now be written as 

V =  1 ( m ,  m,IuIm, mJb;m,b;m2b/m4b/m,. 
dll m 

By recoupling of four angular momenta I we may bring V into an  equivalent form in 
terms of a one-body tensor operator, namely 

(2.4) 

where 

b;,,,b,, 
m 

E ( I l ) ~ = ( b ~ & ) ~ = L ( l  m I m'lkq)b;mb;m 
m 

61, = ( - l ) '+mb/ -m  

and {:I:'} is the 6-j symbol. This form gives us a clue to computing the matrix elements 
of V by directly using single-particle CFP without the definition of two-particle CFP, 

even though one can formally define them by the reduced matrix elements of V in 
accordance with the definition (2.3). It is necessary to mention that one must take 
care of the additional one-body term n when dealing with V in the form (2.4). 

3. Factorisation of CFP 

The symmetry group for the number-preserved system of bosons, each with angular 
momentum I, is the unitary group U ( N ) = U ( 2 1 + 1 ) ,  whose generators are B(l1);  
defined above. Furthermore, the state vectors of n bosons of this kind can be classified 
according to the group chain U( N )  = O( N )  3 0 ( 3 ) ,  i.e. 

(3.1) 

where U is the seniority number, labelling I R  of O ( N )  and relative to the boson pair 
creation operator-the invariant of O( N )  

I [ n ]  ( U )  a L M ) = l n  U CY L M )  

(3.2) 

[ n] labels fully symmetric I R  of U (  N ) .  
All generators for these groups are presented in table 1. 
The generalised irreducible tensor operator T ( T ,  y )  of rank 

group G, a concept extended from 0(3), is defined as follows [6,7]: 
of semisimple Lie 
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Table 1. The generators and Casimir operators for the group chain U ( N 1  = O ( N )  2 0 ( 3 )  
in the boson realisation. 

Group Generators Casimir operator 

where X i  are the generators of G; r labels I R  of G and y labels its basis. Then the 
reduced matrix elements of T ( T ,  y )  can be defined by the generalised Wigner-Eckart 
theorem, namely 

(3.4) 

where (?I/ T(r) l lr)  symbolise the reduced matrix elements of G. 
It is straightforward to prove that the operators 

b;m = b'( [  1]( 1)lm) 5 b'( 11 lm)  

form an irreducible tensor operator of rank [ 11 of U( N )  satisfying 

[ B (  11) t, b'( 1 1 ~ m ) ]  

= c ( l  1 1 m'lB(l1)~il 1 1 m)b'(lllm') (3.5) 

where IllIm)=i[l](l)1m)= b:,IO) are the basis of I R  [ l ]  of U ( N ) ,  built up by b;,,,. 
Equation (3.5) also shows that {bi,,,} is an irreducible tensor operator of rank (1) of 
O( N )  and rank 1 of O(3). One can say that { b;,,,} is classified according to the group 
chain U ( N )  3 O ( N )  30(3!.  Then, making use of (3.4), we have 

m '  

( n  U a L p ' ( l l 1 ) / l n - l  U' a '  L') 

where 

are ISF of U( N )  and O ( N )  respectively. Since (nllb'lln - l), the U ( N )  reduced matrix 
element, is independent of (+ and L, a special representation n = U, L = nl, U' = n - 1 = 
U - 1, L'= ( n  - 1)1 may be selected which makes the ISF unity. Hence 

(nllb"Iln - 1) =A. 
The factorised CFP are obtained by substituting (3.6) for (2.3), i.e. 
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(3.7) 

This is the relation between CFP and ISF.  The right-hand side of (3.7) represents the 
permutation symmetry [ n - 1 1 0  [ 13 2 [ n], but clearly includes a factor of the coupling 
of angular momentum L O L ‘ 3  L. So (3.7) clarifies the physical meaning of CFP. 

The state vectors (3.1) can be expressed in terms of the invariant Pr of O ( N )  
defined in (3.2), i.e. 

(3.8) In U a L ) =  ~ ~ j ~ l a  U a L )  

where /a U a L )  satisfy the following equation: 
P/IU U a L)=O (3.9) 

and p = +( n - U )  is the number of boson pairs. Using the commutation relation 

[P,, P;p] = p ( 2 6 +  N-2p+2)P:‘”-” (3.10) 

we have the normalised constant 
( 2 a +  N-2 ) ! !  

c=(  p ! ( 2 a +  N + 2 p  -2)!! 1 .  
By means of the commutator 

[Py ,  b;,,,] = v‘Z!pP)”-”&, 

the reduced matrix elements of b;,,, may then be computed; they are 

(n U a Lllb:Iln-l a - 1  a’  L’) 
n + a + N - 2  
n ( 2 a +  N - 2) 

(a (Y LllbTlla-1 a‘ L’) 

and 
( n  U a L ~ ~ b ~ ~ ~ n - 1  a + l  a ’  L’) 

( U  a Lllb;llU+l a’  L’). 
n ( 2 a +  N )  

(3.11) 

(3.12) 

(3.13) 

These two results clearly show that the evaluation of irreducible matrix elements of 
b;, for n 2 U is reduced to that for n = a, 

Comparison between (3.121, (3.13) and (3.6) and use of the orthogonality of I S F  

give the algebraic expression of \ ~ < ’ ’ I \ ~ \ ~ ’ ~ ’ , ]  in table 2. Then we have 

Table 2. ISF of U( N )  

(3.14) 
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and 

Making use of the relation 

(3.16) 

we may obtain the well known reciprocal rule of ISF for O( N ) O O (  N )  53 O( N )  3 O(3) 

(3.17) 

To sum up, the evaluation of CFP defined in (2.3) are reduced to that of 
( a a L l l b i l J ~ - l  a’ L’). 

4. The recursion relation of ISF for O(N)OO(N) 3 O ( N )  3 O(3) 

Since the reduction on O( N)  3 O(3) is generally not simple, the first step to evaluate 
ISF  is to find the multiplicity of L in (cr) and choose a practical a in In w a L M ) .  We 
may introduce a quantity a ( a L )  to symbolise the multiplicity of L in ( a ) .  It is easy 
to prove that for L = n l -  5 

 CY(^ L ) = N ( c +  5 ) - N ( ~ - 2  5 ) + N ( ~ - 2  . $ - ~ ) - N ( w  6-1) (4.1) 
where N ( n 6 )  is the number of states with quantum number M = n l -  5 >  0 and  it is 
equal to the number of partitions [&,&. . . 5,,] of integer 6 3 0  under the following 
conditions: 

r = C &  5, integer 

51 2 523. . e$,, 2 0 ken 

e $ ,  s 21. 

, 

Consider the fact that the reduction of 0 ( 3 ) 0 0 ( 3 )  3 0 ( 3 )  is simple, we see that 
the state with L in a multiplicity comes from different constituent angular momentum 
Lo.  Suppose we start from the state Iw-1 a I L ;  M;) ,  which has well defined a-1, 
a&, LA, ML. Making use of CG coefficients we may define a state with well defined L 
and M 

IJILM)={b/I(+-1 a;  L I ) k  

= C ( l  m LI, MblL M)b,,,la-l a ;  Mb). 
m 

Notice that this state has no well defined seniority because if one boson is added, the 
seniority changes by * l .  But this state may be given in terms of states with w and 
U - 2 by linear composition, namely 

I J I L M ) = ~ ~ u  (a ; ,  LA) L M ) + C b ,  (a W - 2  a’’ L M )  (4.2) 
U 
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where in la (aiLh) L M ) ,  (adLb) is used instead of a. Obviously, ad. in /a - 1 ad. LA Mb) 
may be substituted for the constituent one ( a :  L:[)  of Lb. So this kind of label is unique 
and  states I(T (ab L;) L M )  are generally supercomplete. Nevertheless, it is easy to 
select a complete set (the number of linear independent states equal to multiplicity 
a ( a L ) )  from them by an  orthogonalising program. Therefore, it is feasible to use 
(ah Lb) to completely label the basis although there is no  operator corresponding to 
(ab LA) being found. After a tedious derivation we finally get the recursion relation 
O f  ISF 

(4.3) 

where 

R(CYbL&Z‘L’L) 

( 1 )  ( a - 2 )  (a-1) ( 1 )  ( a - 2 )  ((7-1) [ I a”L” I a;L; I[ 1 a”L” I (Y’L‘ I 
Specifically u 2  = R(  cx;L&a;LbL) and naturally the iterative from (4.3) is independent 
of all be,, in (4.2). Thus the ISF  (hence the CFP) with any (T are reduced to that with 
a = 3 and built up  by use of (4.3). That this recursion relation depends on a, not on 
n, avoids a lot of repetitive computation relative to identical ( a )  in differential [n]. 
Furthermore, the dimension of (a)  is smaller than that of [ n ]  including (g). Surely 
this new recursion relation (4.3) including seniority provides a faster mechanism for 
computation of CFP than others without a. 
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